Dimensional Correspondence between the Physical System and the ArXe Temporal Hierarchy

In ArXe theory, a hierarchical reduction of fundamental physical dimensions to a single temporal base is proposed.
The proposed mapping is:

$$T = T^1, \quad L = T^2, \quad M = T^3$$

In this way, every physical magnitude can be expressed as a pure power of \(T\), which unifies the traditional dimensions \((M, L, T)\) within a unique temporal hierarchical scale.
Below is the correspondence table and the consistency check.


Conversion Rule

If a magnitude \(X\) has physical dimension:

$$[X] = M^{\alpha} L^{\beta} T^{\gamma}$$

then, under the ArXe hierarchy:

$$[X]_{\text{ArXe}} = T^{3\alpha + 2\beta + \gamma}$$


Step-by-Step Dimensional Reduction

  1. Basic hierarchical substitution:
    It is defined that each physical dimension is an exponentiation of the temporal one:
    \(L = T^2\), \(M = T^3\).
  2. Complete expansion:
    Given a magnitude \(X\) with dimension \(M^{\alpha} L^{\beta} T^{\gamma}\), we substitute:$$[X] = (T^3)^{\alpha} (T^2)^{\beta} T^{\gamma}$$
  3. Simplification of exponents:
    Adding the exponents of \(T\):$$[X] = T^{3\alpha + 2\beta + \gamma}$$
  4. Result:
    Each physical magnitude is expressed as a unique power of hierarchical time, where the total exponent
    \(n = 3\alpha + 2\beta + \gamma\) represents its ArXe exentation level.

Comparative Dimensional Table

Magnitude Physical Dimension Exponents \((M, L, T)\) ArXe Dimension \([X] = T^n\)
\(c\) \(LT^{-1}\) \((0, 1, -1)\) \(T^{1}\)
\(t_p\) \(T\) \((0, 0, 1)\) \(T^{1}\)
\(l_p\) \(L\) \((0, 1, 0)\) \(T^{2}\)
\(\hbar\) \(ML^{2}T^{-1}\) \((1, 2, -1)\) \(T^{6}\)
\(G\) \(M^{-1}L^{3}T^{-2}\) \((-1, 3, -2)\) \(T^{1}\)
\(m_p\) \(M\) \((1, 0, 0)\) \(T^{3}\)
\(E_p\) \(ML^{2}T^{-2}\) \((1, 2, -2)\) \(T^{5}\)

Consistency Check

1. Fundamental Relation

$$l_p = c , t_p$$

$$T^{2} = T^{1} \cdot T^{1} \quad \Rightarrow \quad \text{Consistent}$$

2. Planck Time Definition

$$t_p = \sqrt{\frac{\hbar G}{c^5}} \quad \Rightarrow \quad T^{1} = \sqrt{\frac{T^{6} \cdot T^{1}}{T^{5}}} = T^{1}$$

3. Planck Mass and Energy

$$m_p = \sqrt{\frac{\hbar c}{G}} \Rightarrow T^{3}, \qquad E_p = m_p c^2 \Rightarrow T^{5}$$


ArXe Transformation Matrix

The dimensional reduction can be expressed as a linear projection:

$$n = [3, 2, 1] \cdot \begin {bmatrix} \alpha \beta \gamma \end {bmatrix}$$

or in explicit matrix form:

$$\begin {bmatrix} n \end {bmatrix} = \begin {bmatrix} 3 & 2 & 1 \end {bmatrix} \begin {bmatrix} \alpha \beta \gamma \end {bmatrix}$$

This matrix acts as a dimensional collapser that takes any physical combination \((M, L, T)\) to a single hierarchical temporal exponent \(T^n\).


Hierarchical Interpretation

Under this assignment:

  • All physical magnitudes are reduced to powers of \(T\).
  • The relation \(L = T^2\) and \(M = T^3\) implies that space and mass are hierarchical exentations of time.
  • The speed of light \(c = T^1\) is interpreted as the hierarchical equivalence operator between consecutive temporal levels.
  • The system is dimensionally closed and self-referential, i.e., each magnitude can be expressed solely through powers of \(T\).