Logic and Physics ArXe

Table from Logical to Physical Structure

ArXe Theory proposes a fundamental correspondence between logical structures and the dimensional architecture of physics. At its core, it suggests that each level of logical complexity maps directly to a specific physical dimension.

The Key Concept

Each number of exentation (n) represents a level in a recursive logical hierarchy. Starting from an initial point (n = 1), each new level is built by systematically applying logical operations to the previous one, generating an infinite ladder of increasing complexity.

The Dimensional Connection

Through a precise mathematical formula, each of these logical levels (n) is transformed into a dimensional exponent (k). This exponent defines fundamental temporal dimensions of the form T^(k,) where:

  • T⁰ represents the dimensionless (the origin point)
  • T¹ corresponds to Time
  • T² corresponds to Length (space)
  • T³ corresponds to Mass

Conversion formula:

[ e(n) = (-1)^(n) cdot lfloor n/2 rfloor, quad n > 1 ]
[ e(1) = 0 ]

This simple expression generates the sequence:
0, 1, −1, 2, −2, 3, −3, 4, −4…

Remarkable Feature

Positive exponents (1, 2, 3…) correspond to the “direct” fundamental dimensions (time, length, mass), while negative exponents (−1, −2, −3…) generate their “variations” (frequency, curvature, density).

Deeper Implication

The ArXe framework suggests that the dimensional structure of physics is not arbitrary but emerges naturally from the architecture of logical recursion.

Physical Units System by Exentation Exponent

Fundamental Assignment

System basis:

  • T¹ = T (Time)
  • T² = L (Length)
  • T³ = M (Mass)

1. Fundamental Exponents

Positive Exponents (Direct Dimensions)

k n Tᵏ Dimension SI Unit Physical Meaning
0 1 T⁰ 1 Dimensionless (pure numbers, radians)
1 2 T s Time, duration, period
2 4 L m Length, distance, displacement
3 6 M kg Mass, amount of matter
4 8 T⁴ Time squared
5 10 T⁵ Area, surface
6 12 T⁶ kg² Mass squared
7 14 T⁷ Time cubed
8 16 T⁸ Volume

Negative Exponents (Inverse Dimensions)

k n Tᵏ Dimension SI Unit Physical Meaning
-1 3 T⁻¹ T⁻¹ s⁻¹ = Hz Frequency, temporal rate
-2 5 T⁻² L⁻¹ m⁻¹ Wave number, linear density
-2 5 T⁻² L⁻² m⁻² Curvature, surface density
-3 7 T⁻³ M⁻¹ kg⁻¹ Inverse specific mass
-4 9 T⁻⁴ T⁻² s⁻² Temporal acceleration
-5 11 T⁻⁵ L⁻³ m⁻³ Inverse volumetric density
-6 13 T⁻⁶ M⁻² kg⁻² Inverse mass squared

2. Physical Units by Exentation Level

Level k = -1 (n = 3): Temporal Variation

Dimension: T⁻¹ = 1/T

Quantity SI Unit Symbol Applications
Frequency hertz Hz = s⁻¹ Waves, oscillations, radiation
Angular velocity radian/second rad/s Rotations, circular motion
Event rate events/second s⁻¹ Stochastic processes
Decay constant inverse second s⁻¹ Radioactive decay, half-life
Radioactive activity becquerel Bq = s⁻¹ Disintegrations per second
Refresh rate hertz Hz Displays, processors

General interpretation: “How many times per unit of time”


Level k = -2 (n = 5): Spatial Variation

Dimension: L⁻¹ and L⁻²

Linear Variation (L⁻¹)

Quantity SI Unit Symbol Applications
Wave number inverse meter m⁻¹ Optics (k = 2π/λ)
Diopters inverse meter m⁻¹ Lens power
Linear gradient per meter m⁻¹ Spatial variations
Linear concentration particles/meter m⁻¹ One-dimensional density

Surface Variation (L⁻²)

Quantity SI Unit Symbol Applications
Gaussian curvature inverse square meter m⁻² Surface geometry
Surface mass density kilogram/m² kg/m² Mass per unit area
Surface charge density coulomb/m² C/m² Electrostatics
Irradiance watt/m² W/m² Energy flux per area
Illuminance lux lx = lm/m² Light per unit surface
Pressure pascal Pa = N/m² Force per unit area
Surface tension newton/meter N/m Liquid interfaces

General interpretation: “How much per unit of space (linear or surface)”


Level k = -3 (n = 7): Mass Variation

Dimension: M⁻¹

Quantity SI Unit Symbol Applications
Inverse specific mass inverse kg kg⁻¹ Relations per unit mass
Charge-to-mass ratio coulomb/kg C/kg Particle physics (e/m)
Specific heat capacity joule/(kg·K) J/(kg·K) Thermodynamics

General interpretation: “How much per unit of mass”


Level k = -5 (n = 11): Volumetric Variation

Dimension: L⁻³

Quantity SI Unit Symbol Applications
Volume mass density kilogram/m³ kg/m³ Material density
Volume charge density coulomb/m³ C/m³ Electrostatics
Number concentration particles/m³ m⁻³ Particle density
Energy density joule/m³ J/m³ Energy per unit volume

General interpretation: “How much per unit of volume”


3. Composite Units (Combinations)

Kinematics

Quantity Dimension Tᵏ Combination SI Unit Expression
Velocity L/T T²·T⁻¹ m/s L·T⁻¹
Acceleration L/T² T²·T⁻¹·T⁻¹ m/s² L·T⁻²
Angular velocity 1/T T⁻¹ rad/s T⁻¹
Angular acceleration 1/T² T⁻¹·T⁻¹ rad/s² T⁻²
Jerk L/T³ T²·T⁻¹·T⁻¹·T⁻¹ m/s³ L·T⁻³

Dynamics

Quantity Dimension Tᵏ Combination SI Unit Expression
Linear momentum M·L/T T³·T²·T⁻¹ kg·m/s M·L·T⁻¹
Force M·L/T² T³·T²·T⁻¹·T⁻¹ N (Newton) M·L·T⁻²
Angular momentum M·L²/T T³·T²·T²·T⁻¹ kg·m²/s M·L²·T⁻¹
Impulse M·L/T T³·T²·T⁻¹ N·s M·L·T⁻¹
Torque M·L²/T² T³·T²·T²·T⁻¹·T⁻¹ N·m M·L²·T⁻²

Energy and Work

Quantity Dimension Tᵏ Combination SI Unit Expression
Energy/Work M·L²/T² T³·T²·T²·T⁻¹·T⁻¹ J (Joule) M·L²·T⁻²
Power M·L²/T³ T³·T²·T²·T⁻¹·T⁻¹·T⁻¹ W (Watt) M·L²·T⁻³
Action M·L²/T T³·T²·T²·T⁻¹ J·s M·L²·T⁻¹
Energy density M/(L·T²) T³·T⁻²·T⁻¹·T⁻¹ J/m³ M·L⁻¹·T⁻²

Fluid Mechanics and Thermodynamics

Quantity Dimension Tᵏ Combination SI Unit Expression
Pressure M/(L·T²) T³·T⁻²·T⁻¹·T⁻¹ Pa (Pascal) M·L⁻¹·T⁻²
Density M/L³ T³·T⁻²·T⁻²·T⁻² kg/m³ M·L⁻³
Dynamic viscosity M/(L·T) T³·T⁻²·T⁻¹ Pa·s M·L⁻¹·T⁻¹
Kinematic viscosity L²/T T²·T²·T⁻¹ m²/s L²·T⁻¹
Surface tension M/T² T³·T⁻¹·T⁻¹ N/m M·T⁻²
Volumetric flow rate L³/T T²·T²·T²·T⁻¹ m³/s L³·T⁻¹
Mass flow rate M/T T³·T⁻¹ kg/s M·T⁻¹

Waves and Oscillations

Quantity Dimension Tᵏ Combination SI Unit Expression
Frequency 1/T T⁻¹ Hz T⁻¹
Wave number 1/L T⁻² m⁻¹ L⁻¹
Wave velocity L/T T²·T⁻¹ m/s L·T⁻¹
Acoustic impedance M/(L²·T) T³·T⁻²·T⁻²·T⁻¹ Pa·s/m M·L⁻²·T⁻¹
Acoustic intensity M/T³ T³·T⁻¹·T⁻¹·T⁻¹ W/m² M·T⁻³

Gravitation

Quantity Dimension Tᵏ Combination SI Unit Expression
Gravitational constant G L³/(M·T²) T²·T²·T²·T⁻³·T⁻¹·T⁻¹ m³/(kg·s²) L³·M⁻¹·T⁻²
Gravitational field L/T² T²·T⁻¹·T⁻¹ m/s² L·T⁻²
Gravitational potential L²/T² T²·T²·T⁻¹·T⁻¹ m²/s² L²·T⁻²

4. Summary by Variation Type

Synthetic Table of Interpretations

Exponent k Level n Dimension Variation Type Typical Quantities
0 1 1 None Dimensionless constants, angles
1 2 T Direct temporal Duration, period
2 4 L Direct spatial Distance, length
3 6 M Direct mass Mass, quantity
-1 3 T⁻¹ Inverse temporal Frequency, rate, rhythm
-2 5 L⁻¹, L⁻² Inverse spatial Curvature, surface density
-3 7 M⁻¹ Inverse mass Ratio per unit mass
-4 9 T⁻² Temporal acceleration Frequency change rate
-5 11 L⁻³ Volumetric Density, concentration

5. Key Observations

Coherence with MLT System

The system T¹=T, T²=L, T³=M exactly reproduces the MLT system (Mass-Length-Time) of classical dimensional analysis:

✅ All mechanical quantities are expressible
✅ Negative exponents generate rates, densities and variations
✅ The structure is consistent with standard dimensional physics
✅ Combinations produce all derived SI units

Pattern of Negative Exponents

  • k = -1: Temporal variation (how many times per second?)
  • k = -2: Linear/surface spatial variation (how much per meter/meter²?)
  • k = -3: Mass variation (how much per kilogram?)
  • k = -5: Volumetric spatial variation (how much per meter³?)

Fundamental Duality

Each positive exponent has its negative “dual”:

  • T¹ (time) ↔ T⁻¹ (frequency)
  • T² (length) ↔ T⁻² (curvature)
  • T³ (mass) ↔ T⁻³ (per unit mass)

6. Complete Physical Quantities by Category

Classical Mechanics

  • Position: L
  • Velocity: L·T⁻¹
  • Acceleration: L·T⁻²
  • Force: M·L·T⁻²
  • Energy: M·L²·T⁻²
  • Power: M·L²·T⁻³
  • Momentum: M·L·T⁻¹
  • Pressure: M·L⁻¹·T⁻²

Thermodynamics

  • Temperature: (requires system extension)
  • Entropy: M·L²·T⁻²·K⁻¹ (with temperature)
  • Heat: M·L²·T⁻²
  • Heat capacity: M·L²·T⁻²·K⁻¹

Electromagnetism

(Would require adding electric charge dimension Q as T⁴ or equivalent)

Optics and Waves

  • Frequency: T⁻¹
  • Wavelength: L
  • Phase velocity: L·T⁻¹
  • Wave number: L⁻¹
  • Intensity: M·T⁻³

ArXe System — Recursive Exentational Architecture
Complete dimensional mapping from fractal logical structure

Leave a Reply