Fundamental Assignment
System basis:
- T¹ = T (Time)
- T² = L (Length)
- T³ = M (Mass)
1. Fundamental Exponents
Positive Exponents (Direct Dimensions)
k | n | Tᵏ | Dimension | SI Unit | Physical Meaning |
---|---|---|---|---|---|
0 | 1 | T⁰ | 1 | — | Dimensionless (pure numbers, radians) |
1 | 2 | T¹ | T | s | Time, duration, period |
2 | 4 | T² | L | m | Length, distance, displacement |
3 | 6 | T³ | M | kg | Mass, amount of matter |
4 | 8 | T⁴ | T² | s² | Time squared |
5 | 10 | T⁵ | L² | m² | Area, surface |
6 | 12 | T⁶ | M² | kg² | Mass squared |
7 | 14 | T⁷ | T³ | s³ | Time cubed |
8 | 16 | T⁸ | L³ | m³ | Volume |
Negative Exponents (Inverse Dimensions)
k | n | Tᵏ | Dimension | SI Unit | Physical Meaning |
---|---|---|---|---|---|
-1 | 3 | T⁻¹ | T⁻¹ | s⁻¹ = Hz | Frequency, temporal rate |
-2 | 5 | T⁻² | L⁻¹ | m⁻¹ | Wave number, linear density |
-2 | 5 | T⁻² | L⁻² | m⁻² | Curvature, surface density |
-3 | 7 | T⁻³ | M⁻¹ | kg⁻¹ | Inverse specific mass |
-4 | 9 | T⁻⁴ | T⁻² | s⁻² | Temporal acceleration |
-5 | 11 | T⁻⁵ | L⁻³ | m⁻³ | Inverse volumetric density |
-6 | 13 | T⁻⁶ | M⁻² | kg⁻² | Inverse mass squared |
2. Physical Units by Exentation Level
Level k = -1 (n = 3): Temporal Variation
Dimension: T⁻¹ = 1/T
Quantity | SI Unit | Symbol | Applications |
---|---|---|---|
Frequency | hertz | Hz = s⁻¹ | Waves, oscillations, radiation |
Angular velocity | radian/second | rad/s | Rotations, circular motion |
Event rate | events/second | s⁻¹ | Stochastic processes |
Decay constant | inverse second | s⁻¹ | Radioactive decay, half-life |
Radioactive activity | becquerel | Bq = s⁻¹ | Disintegrations per second |
Refresh rate | hertz | Hz | Displays, processors |
General interpretation: “How many times per unit of time”
Level k = -2 (n = 5): Spatial Variation
Dimension: L⁻¹ and L⁻²
Linear Variation (L⁻¹)
Quantity | SI Unit | Symbol | Applications |
---|---|---|---|
Wave number | inverse meter | m⁻¹ | Optics (k = 2π/λ) |
Diopters | inverse meter | m⁻¹ | Lens power |
Linear gradient | per meter | m⁻¹ | Spatial variations |
Linear concentration | particles/meter | m⁻¹ | One-dimensional density |
Surface Variation (L⁻²)
Quantity | SI Unit | Symbol | Applications |
---|---|---|---|
Gaussian curvature | inverse square meter | m⁻² | Surface geometry |
Surface mass density | kilogram/m² | kg/m² | Mass per unit area |
Surface charge density | coulomb/m² | C/m² | Electrostatics |
Irradiance | watt/m² | W/m² | Energy flux per area |
Illuminance | lux | lx = lm/m² | Light per unit surface |
Pressure | pascal | Pa = N/m² | Force per unit area |
Surface tension | newton/meter | N/m | Liquid interfaces |
General interpretation: “How much per unit of space (linear or surface)”
Level k = -3 (n = 7): Mass Variation
Dimension: M⁻¹
Quantity | SI Unit | Symbol | Applications |
---|---|---|---|
Inverse specific mass | inverse kg | kg⁻¹ | Relations per unit mass |
Charge-to-mass ratio | coulomb/kg | C/kg | Particle physics (e/m) |
Specific heat capacity | joule/(kg·K) | J/(kg·K) | Thermodynamics |
General interpretation: “How much per unit of mass”
Level k = -5 (n = 11): Volumetric Variation
Dimension: L⁻³
Quantity | SI Unit | Symbol | Applications |
---|---|---|---|
Volume mass density | kilogram/m³ | kg/m³ | Material density |
Volume charge density | coulomb/m³ | C/m³ | Electrostatics |
Number concentration | particles/m³ | m⁻³ | Particle density |
Energy density | joule/m³ | J/m³ | Energy per unit volume |
General interpretation: “How much per unit of volume”
3. Composite Units (Combinations)
Kinematics
Quantity | Dimension | Tᵏ Combination | SI Unit | Expression |
---|---|---|---|---|
Velocity | L/T | T²·T⁻¹ | m/s | L·T⁻¹ |
Acceleration | L/T² | T²·T⁻¹·T⁻¹ | m/s² | L·T⁻² |
Angular velocity | 1/T | T⁻¹ | rad/s | T⁻¹ |
Angular acceleration | 1/T² | T⁻¹·T⁻¹ | rad/s² | T⁻² |
Jerk | L/T³ | T²·T⁻¹·T⁻¹·T⁻¹ | m/s³ | L·T⁻³ |
Dynamics
Quantity | Dimension | Tᵏ Combination | SI Unit | Expression |
---|---|---|---|---|
Linear momentum | M·L/T | T³·T²·T⁻¹ | kg·m/s | M·L·T⁻¹ |
Force | M·L/T² | T³·T²·T⁻¹·T⁻¹ | N (Newton) | M·L·T⁻² |
Angular momentum | M·L²/T | T³·T²·T²·T⁻¹ | kg·m²/s | M·L²·T⁻¹ |
Impulse | M·L/T | T³·T²·T⁻¹ | N·s | M·L·T⁻¹ |
Torque | M·L²/T² | T³·T²·T²·T⁻¹·T⁻¹ | N·m | M·L²·T⁻² |
Energy and Work
Quantity | Dimension | Tᵏ Combination | SI Unit | Expression |
---|---|---|---|---|
Energy/Work | M·L²/T² | T³·T²·T²·T⁻¹·T⁻¹ | J (Joule) | M·L²·T⁻² |
Power | M·L²/T³ | T³·T²·T²·T⁻¹·T⁻¹·T⁻¹ | W (Watt) | M·L²·T⁻³ |
Action | M·L²/T | T³·T²·T²·T⁻¹ | J·s | M·L²·T⁻¹ |
Energy density | M/(L·T²) | T³·T⁻²·T⁻¹·T⁻¹ | J/m³ | M·L⁻¹·T⁻² |
Fluid Mechanics and Thermodynamics
Quantity | Dimension | Tᵏ Combination | SI Unit | Expression |
---|---|---|---|---|
Pressure | M/(L·T²) | T³·T⁻²·T⁻¹·T⁻¹ | Pa (Pascal) | M·L⁻¹·T⁻² |
Density | M/L³ | T³·T⁻²·T⁻²·T⁻² | kg/m³ | M·L⁻³ |
Dynamic viscosity | M/(L·T) | T³·T⁻²·T⁻¹ | Pa·s | M·L⁻¹·T⁻¹ |
Kinematic viscosity | L²/T | T²·T²·T⁻¹ | m²/s | L²·T⁻¹ |
Surface tension | M/T² | T³·T⁻¹·T⁻¹ | N/m | M·T⁻² |
Volumetric flow rate | L³/T | T²·T²·T²·T⁻¹ | m³/s | L³·T⁻¹ |
Mass flow rate | M/T | T³·T⁻¹ | kg/s | M·T⁻¹ |
Waves and Oscillations
Quantity | Dimension | Tᵏ Combination | SI Unit | Expression |
---|---|---|---|---|
Frequency | 1/T | T⁻¹ | Hz | T⁻¹ |
Wave number | 1/L | T⁻² | m⁻¹ | L⁻¹ |
Wave velocity | L/T | T²·T⁻¹ | m/s | L·T⁻¹ |
Acoustic impedance | M/(L²·T) | T³·T⁻²·T⁻²·T⁻¹ | Pa·s/m | M·L⁻²·T⁻¹ |
Acoustic intensity | M/T³ | T³·T⁻¹·T⁻¹·T⁻¹ | W/m² | M·T⁻³ |
Gravitation
Quantity | Dimension | Tᵏ Combination | SI Unit | Expression |
---|---|---|---|---|
Gravitational constant G | L³/(M·T²) | T²·T²·T²·T⁻³·T⁻¹·T⁻¹ | m³/(kg·s²) | L³·M⁻¹·T⁻² |
Gravitational field | L/T² | T²·T⁻¹·T⁻¹ | m/s² | L·T⁻² |
Gravitational potential | L²/T² | T²·T²·T⁻¹·T⁻¹ | m²/s² | L²·T⁻² |
4. Summary by Variation Type
Synthetic Table of Interpretations
Exponent k | Level n | Dimension | Variation Type | Typical Quantities |
---|---|---|---|---|
0 | 1 | 1 | None | Dimensionless constants, angles |
1 | 2 | T | Direct temporal | Duration, period |
2 | 4 | L | Direct spatial | Distance, length |
3 | 6 | M | Direct mass | Mass, quantity |
-1 | 3 | T⁻¹ | Inverse temporal | Frequency, rate, rhythm |
-2 | 5 | L⁻¹, L⁻² | Inverse spatial | Curvature, surface density |
-3 | 7 | M⁻¹ | Inverse mass | Ratio per unit mass |
-4 | 9 | T⁻² | Temporal acceleration | Frequency change rate |
-5 | 11 | L⁻³ | Volumetric | Density, concentration |
5. Key Observations
Coherence with MLT System
The system T¹=T, T²=L, T³=M exactly reproduces the MLT system (Mass-Length-Time) of classical dimensional analysis:
✅ All mechanical quantities are expressible
✅ Negative exponents generate rates, densities and variations
✅ The structure is consistent with standard dimensional physics
✅ Combinations produce all derived SI units
Pattern of Negative Exponents
- k = -1: Temporal variation (how many times per second?)
- k = -2: Linear/surface spatial variation (how much per meter/meter²?)
- k = -3: Mass variation (how much per kilogram?)
- k = -5: Volumetric spatial variation (how much per meter³?)
Fundamental Duality
Each positive exponent has its negative “dual”:
- T¹ (time) ↔ T⁻¹ (frequency)
- T² (length) ↔ T⁻² (curvature)
- T³ (mass) ↔ T⁻³ (per unit mass)
6. Complete Physical Quantities by Category
Classical Mechanics
- Position: L
- Velocity: L·T⁻¹
- Acceleration: L·T⁻²
- Force: M·L·T⁻²
- Energy: M·L²·T⁻²
- Power: M·L²·T⁻³
- Momentum: M·L·T⁻¹
- Pressure: M·L⁻¹·T⁻²
Thermodynamics
- Temperature: (requires system extension)
- Entropy: M·L²·T⁻²·K⁻¹ (with temperature)
- Heat: M·L²·T⁻²
- Heat capacity: M·L²·T⁻²·K⁻¹
Electromagnetism
(Would require adding electric charge dimension Q as T⁴ or equivalent)
Optics and Waves
- Frequency: T⁻¹
- Wavelength: L
- Phase velocity: L·T⁻¹
- Wave number: L⁻¹
- Intensity: M·T⁻³
ArXe System — Recursive Exentational Architecture
Complete dimensional mapping from fractal logical structure
Leave a Reply
You must be logged in to post a comment.