Logic and Physics ArXe

Physical Units System by Exentation Exponent

Fundamental Assignment

System basis:

  • T¹ = T (Time)
  • T² = L (Length)
  • T³ = M (Mass)

1. Fundamental Exponents

Positive Exponents (Direct Dimensions)

k n Tᵏ Dimension SI Unit Physical Meaning
0 1 T⁰ 1 Dimensionless (pure numbers, radians)
1 2 T s Time, duration, period
2 4 L m Length, distance, displacement
3 6 M kg Mass, amount of matter
4 8 T⁴ Time squared
5 10 T⁵ Area, surface
6 12 T⁶ kg² Mass squared
7 14 T⁷ Time cubed
8 16 T⁸ Volume

Negative Exponents (Inverse Dimensions)

k n Tᵏ Dimension SI Unit Physical Meaning
-1 3 T⁻¹ T⁻¹ s⁻¹ = Hz Frequency, temporal rate
-2 5 T⁻² L⁻¹ m⁻¹ Wave number, linear density
-2 5 T⁻² L⁻² m⁻² Curvature, surface density
-3 7 T⁻³ M⁻¹ kg⁻¹ Inverse specific mass
-4 9 T⁻⁴ T⁻² s⁻² Temporal acceleration
-5 11 T⁻⁵ L⁻³ m⁻³ Inverse volumetric density
-6 13 T⁻⁶ M⁻² kg⁻² Inverse mass squared

2. Physical Units by Exentation Level

Level k = -1 (n = 3): Temporal Variation

Dimension: T⁻¹ = 1/T

Quantity SI Unit Symbol Applications
Frequency hertz Hz = s⁻¹ Waves, oscillations, radiation
Angular velocity radian/second rad/s Rotations, circular motion
Event rate events/second s⁻¹ Stochastic processes
Decay constant inverse second s⁻¹ Radioactive decay, half-life
Radioactive activity becquerel Bq = s⁻¹ Disintegrations per second
Refresh rate hertz Hz Displays, processors

General interpretation: “How many times per unit of time”


Level k = -2 (n = 5): Spatial Variation

Dimension: L⁻¹ and L⁻²

Linear Variation (L⁻¹)

Quantity SI Unit Symbol Applications
Wave number inverse meter m⁻¹ Optics (k = 2π/λ)
Diopters inverse meter m⁻¹ Lens power
Linear gradient per meter m⁻¹ Spatial variations
Linear concentration particles/meter m⁻¹ One-dimensional density

Surface Variation (L⁻²)

Quantity SI Unit Symbol Applications
Gaussian curvature inverse square meter m⁻² Surface geometry
Surface mass density kilogram/m² kg/m² Mass per unit area
Surface charge density coulomb/m² C/m² Electrostatics
Irradiance watt/m² W/m² Energy flux per area
Illuminance lux lx = lm/m² Light per unit surface
Pressure pascal Pa = N/m² Force per unit area
Surface tension newton/meter N/m Liquid interfaces

General interpretation: “How much per unit of space (linear or surface)”


Level k = -3 (n = 7): Mass Variation

Dimension: M⁻¹

Quantity SI Unit Symbol Applications
Inverse specific mass inverse kg kg⁻¹ Relations per unit mass
Charge-to-mass ratio coulomb/kg C/kg Particle physics (e/m)
Specific heat capacity joule/(kg·K) J/(kg·K) Thermodynamics

General interpretation: “How much per unit of mass”


Level k = -5 (n = 11): Volumetric Variation

Dimension: L⁻³

Quantity SI Unit Symbol Applications
Volume mass density kilogram/m³ kg/m³ Material density
Volume charge density coulomb/m³ C/m³ Electrostatics
Number concentration particles/m³ m⁻³ Particle density
Energy density joule/m³ J/m³ Energy per unit volume

General interpretation: “How much per unit of volume”


3. Composite Units (Combinations)

Kinematics

Quantity Dimension Tᵏ Combination SI Unit Expression
Velocity L/T T²·T⁻¹ m/s L·T⁻¹
Acceleration L/T² T²·T⁻¹·T⁻¹ m/s² L·T⁻²
Angular velocity 1/T T⁻¹ rad/s T⁻¹
Angular acceleration 1/T² T⁻¹·T⁻¹ rad/s² T⁻²
Jerk L/T³ T²·T⁻¹·T⁻¹·T⁻¹ m/s³ L·T⁻³

Dynamics

Quantity Dimension Tᵏ Combination SI Unit Expression
Linear momentum M·L/T T³·T²·T⁻¹ kg·m/s M·L·T⁻¹
Force M·L/T² T³·T²·T⁻¹·T⁻¹ N (Newton) M·L·T⁻²
Angular momentum M·L²/T T³·T²·T²·T⁻¹ kg·m²/s M·L²·T⁻¹
Impulse M·L/T T³·T²·T⁻¹ N·s M·L·T⁻¹
Torque M·L²/T² T³·T²·T²·T⁻¹·T⁻¹ N·m M·L²·T⁻²

Energy and Work

Quantity Dimension Tᵏ Combination SI Unit Expression
Energy/Work M·L²/T² T³·T²·T²·T⁻¹·T⁻¹ J (Joule) M·L²·T⁻²
Power M·L²/T³ T³·T²·T²·T⁻¹·T⁻¹·T⁻¹ W (Watt) M·L²·T⁻³
Action M·L²/T T³·T²·T²·T⁻¹ J·s M·L²·T⁻¹
Energy density M/(L·T²) T³·T⁻²·T⁻¹·T⁻¹ J/m³ M·L⁻¹·T⁻²

Fluid Mechanics and Thermodynamics

Quantity Dimension Tᵏ Combination SI Unit Expression
Pressure M/(L·T²) T³·T⁻²·T⁻¹·T⁻¹ Pa (Pascal) M·L⁻¹·T⁻²
Density M/L³ T³·T⁻²·T⁻²·T⁻² kg/m³ M·L⁻³
Dynamic viscosity M/(L·T) T³·T⁻²·T⁻¹ Pa·s M·L⁻¹·T⁻¹
Kinematic viscosity L²/T T²·T²·T⁻¹ m²/s L²·T⁻¹
Surface tension M/T² T³·T⁻¹·T⁻¹ N/m M·T⁻²
Volumetric flow rate L³/T T²·T²·T²·T⁻¹ m³/s L³·T⁻¹
Mass flow rate M/T T³·T⁻¹ kg/s M·T⁻¹

Waves and Oscillations

Quantity Dimension Tᵏ Combination SI Unit Expression
Frequency 1/T T⁻¹ Hz T⁻¹
Wave number 1/L T⁻² m⁻¹ L⁻¹
Wave velocity L/T T²·T⁻¹ m/s L·T⁻¹
Acoustic impedance M/(L²·T) T³·T⁻²·T⁻²·T⁻¹ Pa·s/m M·L⁻²·T⁻¹
Acoustic intensity M/T³ T³·T⁻¹·T⁻¹·T⁻¹ W/m² M·T⁻³

Gravitation

Quantity Dimension Tᵏ Combination SI Unit Expression
Gravitational constant G L³/(M·T²) T²·T²·T²·T⁻³·T⁻¹·T⁻¹ m³/(kg·s²) L³·M⁻¹·T⁻²
Gravitational field L/T² T²·T⁻¹·T⁻¹ m/s² L·T⁻²
Gravitational potential L²/T² T²·T²·T⁻¹·T⁻¹ m²/s² L²·T⁻²

4. Summary by Variation Type

Synthetic Table of Interpretations

Exponent k Level n Dimension Variation Type Typical Quantities
0 1 1 None Dimensionless constants, angles
1 2 T Direct temporal Duration, period
2 4 L Direct spatial Distance, length
3 6 M Direct mass Mass, quantity
-1 3 T⁻¹ Inverse temporal Frequency, rate, rhythm
-2 5 L⁻¹, L⁻² Inverse spatial Curvature, surface density
-3 7 M⁻¹ Inverse mass Ratio per unit mass
-4 9 T⁻² Temporal acceleration Frequency change rate
-5 11 L⁻³ Volumetric Density, concentration

5. Key Observations

Coherence with MLT System

The system T¹=T, T²=L, T³=M exactly reproduces the MLT system (Mass-Length-Time) of classical dimensional analysis:

✅ All mechanical quantities are expressible
✅ Negative exponents generate rates, densities and variations
✅ The structure is consistent with standard dimensional physics
✅ Combinations produce all derived SI units

Pattern of Negative Exponents

  • k = -1: Temporal variation (how many times per second?)
  • k = -2: Linear/surface spatial variation (how much per meter/meter²?)
  • k = -3: Mass variation (how much per kilogram?)
  • k = -5: Volumetric spatial variation (how much per meter³?)

Fundamental Duality

Each positive exponent has its negative “dual”:

  • T¹ (time) ↔ T⁻¹ (frequency)
  • T² (length) ↔ T⁻² (curvature)
  • T³ (mass) ↔ T⁻³ (per unit mass)

6. Complete Physical Quantities by Category

Classical Mechanics

  • Position: L
  • Velocity: L·T⁻¹
  • Acceleration: L·T⁻²
  • Force: M·L·T⁻²
  • Energy: M·L²·T⁻²
  • Power: M·L²·T⁻³
  • Momentum: M·L·T⁻¹
  • Pressure: M·L⁻¹·T⁻²

Thermodynamics

  • Temperature: (requires system extension)
  • Entropy: M·L²·T⁻²·K⁻¹ (with temperature)
  • Heat: M·L²·T⁻²
  • Heat capacity: M·L²·T⁻²·K⁻¹

Electromagnetism

(Would require adding electric charge dimension Q as T⁴ or equivalent)

Optics and Waves

  • Frequency: T⁻¹
  • Wavelength: L
  • Phase velocity: L·T⁻¹
  • Wave number: L⁻¹
  • Intensity: M·T⁻³

ArXe System — Recursive Exentational Architecture
Complete dimensional mapping from fractal logical structure

Leave a Reply